Reducing subspaces for a class of multiplication operators on the Dirichlet space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hankel operators and invariant subspaces of the Dirichlet space

The Dirichlet space D is the space of all analytic functions f on the open unit disc D such that f ′ is square integrable with respect to two-dimensional Lebesgue measure. In this paper we prove that the invariant subspaces of the Dirichlet shift are in 1-1 correspondence with the kernels of the Dirichlet-Hankel operators. We then apply this result to obtain information about the invariant subs...

متن کامل

Invariant subspaces of abstract multiplication operators

INVARIANT SUBSPACES OF ABSTRACT MULTIPLICATION OPERATORS by Hermann Flaschka We describe a class of operators on a Banach space ft whose members behave, in a sense, like multiplication operators, and consequently leave invariant a proper closed subspace of IB. One of the sufficient conditions for an operator to be such an "abstract multiplication" bears a striking resemblence to an assumption m...

متن کامل

Fredholm Weighted Composition Operators on Dirichlet Space

Let H be a Hilbert space of analytic functions on the unit disk D. For an analytic function ψ on D, we can define the multiplication operator Mψ : f → ψf, f ∈ H. For an analytic selfmapping φ of D, the composition operator Cφ defined on H as Cφf f ◦ φ, f ∈ H. These operators are two classes of important operators in the study of operator theory in function spaces 1–3 . Furthermore, for ψ and φ,...

متن کامل

A Note on Quadratic Maps for Hilbert Space Operators

In this paper, we introduce the notion of sesquilinear map on Β(H) . Based on this notion, we define the quadratic map, which is the generalization of positive linear map. With the help of this concept, we prove several well-known equality and inequality...  

متن کامل

Approximation numbers of composition operators on the Dirichlet space

We study the decay of approximation numbers of compact composition operators on the Dirichlet space. We give upper and lower bounds for these numbers. In particular, we improve on a result of O. El-Fallah, K. Kellay, M. Shabankhah and A. Youssfi, on the set of contact points with the unit circle of a compact symbolic composition operator acting on the Dirichlet space D. We extend their results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2009

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-09-09859-1